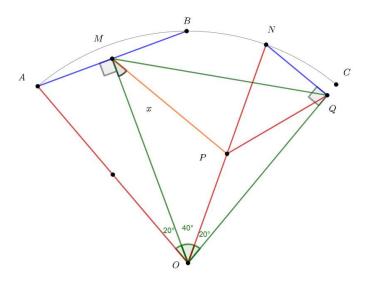
Nome: Cleiton Almeida Ataide Email: ataidecaa@gmail.com

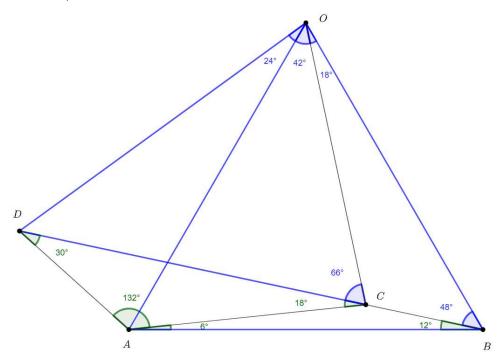
Problema 6. Sejam $A, B \in C$ vértices consecutivos de um eneágono regular inscrito em um círculo de centro O. Os pontos $M, N \in P$ são, respectivamente, pontos médios da corda \overline{AB} , do menor arco \widehat{AB} e do raio \overline{ON} . Calcule a medida do ângulo $\angle OMP$.



Solução:

- 1. Como são pontos de um eneágono, o $\angle AOM = 20^{\circ}$ e $\angle MON = 40^{\circ}$.
- 2. Note que o $\triangle AOM$ é retângulo em M.
- 3. Tome Q, tal que $\triangle NOQ \equiv \triangle AOM$. Logo, $\angle NOQ = 20^{\circ}$.
- 4. Assim, o ΔMOQ é equilátero.
- 5. Trace \overline{PQ} . Note que este segmento é mediana em relação à hipotenusa \overline{NO} . Logo, $\overline{PQ} = \overline{OP}$, e por conseguinte \overline{MP} é mediatriz de \overline{OQ} .
- 6. Finalmente, $2x = 60^{\circ}$: $x = 30^{\circ}$

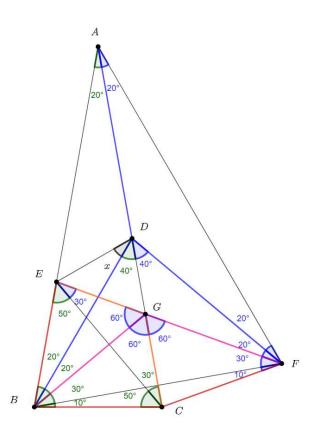
Problema 5 Um triângulo \overline{ABC} é tal que $\widehat{A}=6^{\circ}$ e $\widehat{B}=12^{\circ}$. Seja D um ponto na semirreta BC tal que $\angle CAD=132^{\circ}$. Prove que $\overline{AB}=\overline{CD}$.



Solução:

- 1. Note que $\angle ECA = 18^{\circ} \ e \ \angle BDA = 30^{\circ}$.
- 2. Seja O, o circuncentro do ΔDAB . Assim, ΔOAB será equilátero, pois $\angle BDA = 30^{\circ}$.
- 3. Note que $\angle AOD = 24^{\circ}$, pois $\angle ABD = 12^{\circ}$.
- 4. Perceba que o $\triangle OAB$ é o triângulo de Mustafa Yagci. Logo, $\angle BCO = 18^{\circ}$ e $\angle COA = 42^{\circ}$.
- 5. Assim, $\angle DCO = 66^{\circ}$, pois é externo ao $\triangle CBO$.
- 6. Finalmente, note $\triangle ODC$ é isósceles de base OC. Logo, $\overline{CD} = \overline{OD} = \overline{AB}$. (c.q.d)

Problema 4. (Triângulo russo / Triângulo de Langley) Seja ABC um triângulo isósceles de base \overline{BC} , tal que $\widehat{A}=20^\circ$. Sejam D e E, respectivamente, pontos sobre os lados \overline{AC} e \overline{AB} tais que $\angle DBC=60^\circ$ e $\angle ECB=50^\circ$. Calcule a medida do ângulo $\angle EDB$.



Solução:

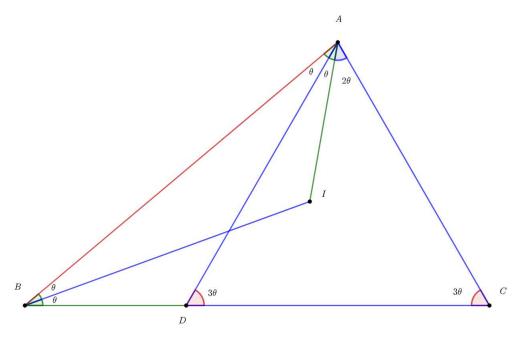
Olhando com cuidado a figura, para quem já está mais acostumado com as soluções por construções, três coisas se destacam: os triangulos isósceles ΔBCE e ΔABD , e o ângulo de 30°. Assim, minha solução tentou explorar esses elementos.

- 1. Com o ojetivo de aumentar a simetria na figura, tome F tal que o $\triangle ADF$ seja o simétrico do $\triangle ABD$ com relação à \overline{AD} . Com efeito, \overline{AC} mediatriz de \overline{BF} .
- 2. Assim, $\angle FDC = \angle CDB = 40^{\circ}$, $\angle BFD = \angle DBF = 50^{\circ}$, $\angle CFB = \angle FBC = 10^{\circ}$.
- 3. Agora, explorando o $\triangle EBC$, tracemos bissetriz de $\angle EBC$, que pelo fato de $\triangle EBC$ ser isósceles, esta será também mediatriz de \overline{EC} . Note que ela intercepta \overline{AC} em G.
- 4. Note que G está conectado ao ângulo de 30° e como está sobre a mediatriz de \overline{EC} , $\angle ECG = \angle GEC = 30^{\circ}$. Com efeito, $\angle CGB = \angle BGE = 60^{\circ}$.
- 5. Porém G também está sobre a mediatriz de \overline{BF} . Logo, $\angle GBF = \angle BFG = 30^{\circ}$ e $\angle FGC = 60^{\circ}$.

6. Note que $\angle CGB + \angle BGE + \angle FGC = 180^\circ$. Portanto, F, G e E são colineares $e \angle EFD = \angle GFD = 20^\circ$.

- 7. Aqui temos duas opções para terminar a questão: a) notar que D é incentro de ΔAEF ; ou b) notar que o quadrilátero EBFD é inscritível. Escolhendo a b).
- 8. Note que em sendo EBFD é inscritível, $\angle BDE$ e $\angle BFE$ enxergam o mesmo segmento \overline{BE} , em EBFD. Assim, $\angle BDE = \angle BFE$ \therefore $x = 30^{\circ}$.

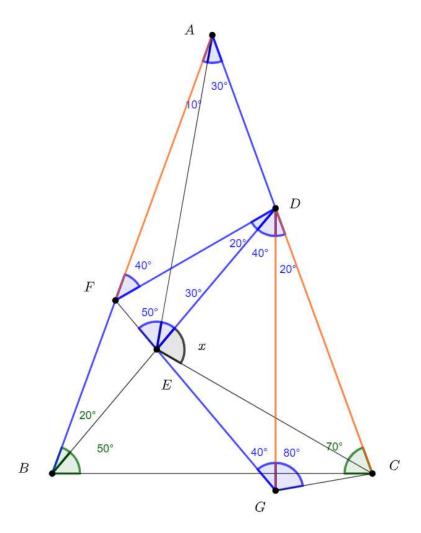
Problema 3. Os ângulos B^e C^de um triângulo ABC estão entre si na razão de 2 para 3. Seja I o incentro de ABC, e suponha que BI=AC. Calcule os ângulos do triângulo ABC.



Solução:

- 1. Tome D sobre BC, tal que $\overline{AD} = \overline{AC}$. Logo, $\angle DAB = \theta$.
- 2. Note que $\triangle ABD \equiv \triangle BAI$, pelo caso L. A. L. Assim, $\angle IAB = \angle DBA = 2\theta$, e consequentemente $IAD = \theta$.
- 3. Como I é incentro, $\angle IAC = \angle IAB = 2\theta$. Logo, $\triangle ADC$ é equilátero, com $3\theta = 60^{\circ}$ $\therefore \theta = 20^{\circ}$.
- 4. Finalmente, os ângulos do triângulo ABC são $\widehat{A}=80^{\circ}$, $\widehat{B}=40^{\circ}$ e $\widehat{C}=60^{\circ}$.

Problema 2. Em um triângulo ABC, o ângulo interno \widehat{A} mede 40° e $\overline{AB} = \overline{AC}$. Sobre o lado \overline{AC} toma-se um ponto D tal que $\angle ABD = 20^\circ$. Seja E um ponto do segmento \overline{BD} tal que $\overline{DE} = \overline{DA}$. Calcule a medida do ângulo $\angle DEC$.



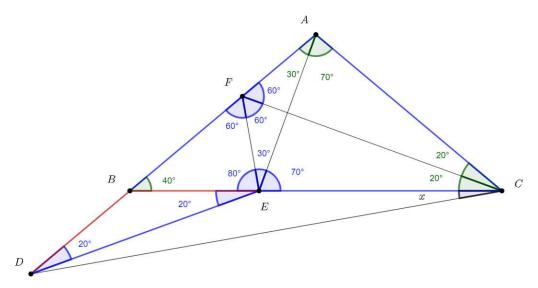
Solução:

- 1. Como o $\triangle ABC$ é isósceles com $\angle BAC = 40^\circ$, então $\angle DCB = \angle ABC = 70^\circ$. Assim, como $\angle ABD = 20^\circ$, por hipótese, então $\angle DBC = 50^\circ$ e consequentemente $\angle CBD = 60^\circ$.
- 2. Também por hipótese, temos que $\triangle AED$ é isósceles de base \overline{AE} . Logo, $\angle DAE = \angle AED = 30^{\circ}$ e $\angle BAE = 10^{\circ}$.
- 3. Note que o $\triangle ABD$ possui ângulos na razão 2 para 1. Assim, sobre \overline{AB} tome o ponto F de modo a obter os triângulos $\triangle FBD$ e $\triangle AFD$ isósceles. Com efeito, $\angle AFD = 40^{\circ}$.
- 4. Com o objetivo de obter um triângulo congruente a $\triangle AFD$, tome G de forma que $\angle ADG = 20^{\circ} \ e \ \overline{DC} = \overline{DG}$.
- 5. Perceba que assim, $\triangle EGD \equiv \triangle AFD$. Com efeito, $\angle DGC = 80^{\circ}$ e $\angle EGD = 40^{\circ}$.

6. Perceba que $\angle EGC = 120^{\circ} + \angle EDC = 60^{\circ} = 180^{\circ}$. Portanto, o quadrilátero EGCD é cíclico.

7. Finalmente, como $\angle DGC$ e $\angle DEC$ enxergam o mesmo segmento \overline{DC} . Logo, $\angle DGC = \angle DGC$ \therefore $x = 80^{\circ}$.

Problema 1. Em um triângulo ABC, o ângulo interno \widehat{A} mede 100° e $\overline{AB} = \overline{AC}$. Sobre o prolongamento do lado \overline{AB} , toma-se um ponto D tal que $\overline{AD} = \overline{BC}$ (o ponto B está entre A e D). Calcule a medida do ângulo $\angle BCD$.

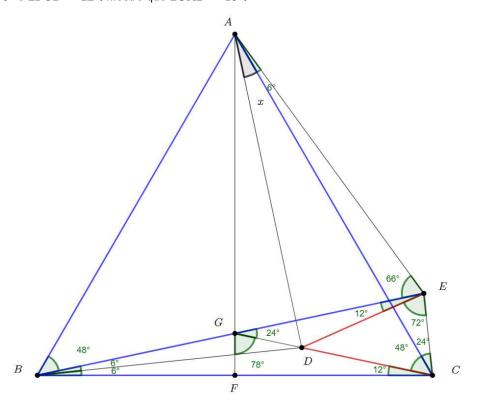


Solução:

Um fato que chama a atenção na figura é o de terem sido dados dois segmentos de mesmo tamanho com um ponto em comum, o ponto B. Uma escolha natural que pode ser feita, seria tomar um ponto E sobre \overline{BC} de tal sorte que $\overline{BE} = \overline{AC}$, com isso ganhamos 2 triângulos isósceles. Isso pareceu promissor e a minha solução busca explorar esse fato.

- 1. Tome \overline{E} sobre \overline{BC} tal que $\overline{BE} = \overline{AC}$. Com efeito, $\overline{BE} = \overline{BD}$. Logo, os ΔAEC e ΔBDE são isósceles de bases \overline{AE} e \overline{DE} , respectivamente. Assim, $\angle EAB = 30^{\circ}$.
- 2. Aqui temos duas possibilidades: 1) usar o lema do quadrilátero côncavo no quadrilátero ADEC, para a firmar $\overline{ED} = \overline{EC}$; ou 2) trabalhar um pouco mais para chegar a essa conclusão traçando a mediatriz de \overline{AE} .
- 3. Seja F o encontro da mediatriz de \overline{AE} com \overline{AB} . Logo, $\angle FEA = \angle EAF = 30^{\circ}$. Com efeito, $\angle AFC = \angle CFA = \angle EFB = 60^{\circ}$ e $\angle BEF = 80^{\circ}$.
- 4. Note que os triângulos $\Delta FDE \equiv \Delta FEC$, pelo caso A. L. A. Logo, $\overline{ED} = \overline{EC}$.
- 5. Assim o $\triangle EDC$ é isósceles de base \overline{DC} com, $\angle EDC = \angle DCE$ e $\angle EDC + \angle DCE = \angle DEB$. Portanto, $2x = 20^{\circ}$ \therefore $x = 10^{\circ}$.

Problema extra (triângulo de Mustafa Yagci). Seja ABC um triângulo equilátero e D um ponto em seu interior tal que $\angle DCA = 6^{\circ}$ e $\angle BCD = 12^{\circ}$. Mostre que $\angle CAD = 18^{\circ}$.



Solução:

- 1. Tome E o simétrico de C com relação a \overline{BD} . Assim, $\overline{BE} = \overline{BC}$ e $\overline{DE} = \overline{DC}$. Com efeito, $\angle EBD = \angle DBC = 6^{\circ}$, $\angle DEB = \angle BEC = 12^{\circ}$ e $\angle ABE = 48^{\circ}$.
- 2. Note que B é o cinrcuncentro de $\triangle ACE$. Com efeito, $\angle ACE = 24^{\circ}$, $\angle EAC = 6^{\circ}$ e $\angle BEA = 66^{\circ}$.
- 3. Seja \overline{AF} a altura do triângulo ABC. Note que ela intercepta o segmento \overline{BE} em G.
- 4. Perceba que G, D, e C estão colineares, pois \overline{GC} deve fazer um ângulo de 12° com \overline{BC} , porém \overline{DC} também faz o mesmo ângulo com \overline{BC} , portanto esses três pontos são colineares. Logo, $\angle DGF = \angle CGF = 78^{\circ}$ e $\angle CGE = 24^{\circ}$.
- 5. Note que o quadrilátero GDEA é inscritível, pois $\angle CGF = \angle DEA = 78^{\circ}$.
- 6. Finalmente, note que $\angle EGD = \angle EAD$, pois enxergam o mesmo segmento \overline{DE} em GDEA. Portanto, $x + 6^\circ = 24^\circ$ \therefore $x = 18^\circ$ (c. q. d)